专利摘要:
In the present invention, a control device (2a) sets a target temperature for an air-conditioned space (10), compares the value obtained by subtracting from the target temperature an outside temperature detected by an outside temperature sensor (9) and a first threshold relating to that value, compares the value obtained by subtracting the outside temperature from an inside temperature detected by an inside temperature sensor (8) and a second threshold relating to that value, compares the value obtained by subtracting the heat load of the air-conditioned space (10) from the cooling capacity and a third threshold relating to that value, and controls the operation of a heat pump-type air conditioner (2) and a fan device (3) on the basis of these comparison results. The first, second and third thresholds are set in accordance with the number of people detected by a people-detection sensor (5).
公开号:AU2013223492A1
申请号:U2013223492
申请日:2013-01-17
公开日:2014-09-11
发明作者:Kazuya Kubo
申请人:Mitsubishi Electric Corp;
IPC主号:F24F11-02
专利说明:
DESCRIPTION Title of Invention AIR-CONDITIONING SYSTEM Technical Field [0001] The present invention relates to an air-conditioning system. Background Art [0002] As an existing controller of an air-conditioning device, there is the following controller. For example, there is a controller which determines whether a room temperature is higher than a set value, and which performs control such that output from a microcomputer of an indoor unit to a driving transistor (the indoor unit side) becomes "LO" when the room temperature is lower than the set value, thereby stopping operation of a compressor and a ventilation fan (turning off the compressor and turning off the ventilation fan). On the other hand, when the room temperature is higher than the set value, the controller performs control such that an ON signal is transmitted from the microcomputer of the indoor unit to a microcomputer of an outdoor unit and output from the microcomputer of the outdoor unit to a driving transistor (the outdoor unit side) becomes "HI", whereby the controller starts operation of the compressor (turns on the compressor) and determines whether the outdoor temperature is lower than the room temperature. Here, when the outdoor temperature is higher than the room temperature, the controller stops operation of the ventilation fan (turns off the ventilation fan). On the other hand, when the outdoor temperature is lower than the room temperature, the controller starts operation of the ventilation fan (turns on the ventilation fan) (e.g., see Patent Literature 1). [0003] In addition, as an existing controller of an air-conditioning device, there is a controller which manages presence/absence of a user in a living room, which operates an air-conditioning device and a heat exchanger when there is a person present in the room, and which stops the air-conditioning device and the heat -1 exchanger when there is no person present in the room (e.g., see Patent Literature 2). Citation List Patent Literature [0004] Patent Literature 1: Japanese Unexamined Patent Application Publication No. 2-178556 (page 3, Fig. 4) Patent Literature 2: Japanese Unexamined Patent Application Publication No. 2010-181078 ([0042] to [0047], Fig. 4) Summary of Invention Technical Problem [0005] In an existing air-conditioning device having an auxiliary cooling operation by introduction of outdoor air as in Patent Literature 1 and 2, whether to introduce outdoor air is determined on the basis of the difference between the outdoor temperature and the indoor temperature or the difference between the outdoor temperature and an indoor setting temperature. However, loss caused by heat generation of a motor when the outdoor air is introduced, heat generation of a control board, or the like is not taken into consideration. Thus, there is a problem that even when the outdoor air is introduced into a room, cooling is not actually performed. [0006] The present invention has been made in order to solve the above-described problem, and an object of the present invention is to provide an air-conditioning system which is able to effectively use cooling energy of outdoor air without deteriorating comfort. Solution to Problem [0007] An air-conditioning system according to the present invention includes: a heat pump type air-conditioning device; a human detection sensor; an indoor temperature sensor; an outdoor temperature sensor; a ventilating device circulating air in a room and outdoor air; and a controller controlling the heat pump type air-conditioning device and the ventilating device on the basis of detection values of the human detection sensor, the indoor temperature sensor, and the outdoor temperature sensor. The controller sets a target setting temperature for the room. The controller compares a value obtained by subtracting an outdoor temperature detected by the outdoor temperature sensor from the target setting temperature, with a first threshold related to the value. The controller compares a value obtained by subtracting the outdoor temperature from an indoor temperature detected by the indoor temperature sensor, with a second threshold related to the value. The controller compares a value obtained by subtracting an indoor heat load from a cooling capacity, with a third threshold related to the value. The controller controls operation of the heat pump type air-conditioning device and the ventilating device on the basis of these comparison results. The first threshold, the second threshold, and the third threshold are set in accordance with the number of people detected by the human detection sensor. Advantageous Effects of Invention [0008] The air-conditioning system according to the present invention is configured to change the thresholds for determining whether cooling by introduction of outdoor air is enabled, on the basis of person presence information by the human detection sensor, and thus has an effect of contributing to energy saving without deteriorating comfort. In addition, the air-conditioning system according to the present invention is configured to determine whether a cooling capacity by introducing the outdoor air is sufficient for the indoor heat load, on the basis of whether it exceeds the threshold or is equal to or lower than the threshold, and thus has an effect that outdoor air cooling that takes into consideration loss in introducing the outdoor air is enabled. Brief Description of Drawings [0009] [Fig. 1] Fig. 1 is a diagram showing the configuration of an air-conditioning system according to Embodiment 1 of the present invention. [Fig. 2] Fig. 2 is a diagram showing a flowchart of a control operation of the airconditioning system according to Embodiment 1 of the present invention. [Fig. 3] Fig. 3 is a diagram showing the configuration of an air-conditioning system according to Embodiment 2 of the present invention. [Fig. 4] Fig. 4 is a diagram showing a flowchart of a control operation of the air conditioning system according to Embodiment 2 of the present invention. Description of Embodiments [0010] Embodiment 1 Embodiment 1 will be described with reference to Figs. 1 and 2 below. Fig. 1 is a diagram showing the configuration of an air-conditioning system 100 according to Embodiment 1 of the present invention. Fig. 2 is a diagram showing a flowchart of a control operation of the air conditioning system 100 according to Embodiment 1 of the present invention. [0011] In Embodiment 1, as shown in Fig. 1, the air-conditioning system 100 includes an outdoor air introduction portion 1, a heat pump type air-conditioning device 2, a ventilating device 3, a communication line 4, a human detection sensor 5, an indoor temperature sensor 8, and an outdoor temperature sensor 9. [0012] The outdoor air introduction portion 1, the ventilating device 3, the human detection sensor 5, the indoor temperature sensor 8, and the outdoor temperature sensor 9 are provided in an air-conditioning space 10. The air-conditioning space 10 is surrounded by wall surfaces, and an opening 1 a and an opening 3a are provided in some of the wall surfaces. The heat pump type air-conditioning device 2 is provided in an air-conditioning device installation space 20. The air-conditioning device installation space 20 is located above the air-conditioning space 10. The air conditioning space 10 and the air-conditioning device installation space 20 are separated by, for example, a partition plate 7. The partition plate 7 is provided with an opening 7a through which cold air is introduced from the heat pump type air conditioning device 2 to the air-conditioning space 10; and an opening 7b through
A
which air in the air-conditioning space 10 is introduced to the heat pump type air conditioning device 2. [0013] The outdoor air introduction portion 1 serves to cause outdoor air to flow into the air-conditioning space 10. In the outdoor air introduction portion 1, the opening 1 a is provided in an outer wall of the air-conditioning space 10, and an outdoor air separation plate 1 b which separates the outdoor air, having flowed into the air conditioning space 10, into two directions is provided at the opening inner side. The ventilating device 3 is a device which discharges air in the air-conditioning space 10 to the outside. In the ventilating device 3, the opening 3a is formed at a position facing the outdoor air introduction portion 1, and the ventilating device 3 includes a fan 3b. The human detection sensor 5 detects the number of people present in the air-conditioning space 10. The indoor temperature sensor 8 detects the temperature in the air-conditioning space 10. The outdoor temperature sensor 9 detects an outdoor temperature. [0014] The heat pump type air-conditioning device 2 includes a controller 2a. The controller 2a controls operation of the heat pump type air-conditioning device 2 and the ventilating device 3 on the basis of thresholds (later-described), the indoor temperature, the outdoor temperature, a target setting temperature, a cooling capacity to cool the inside of a room, and an indoor heat load. [0015] The heat pump type air-conditioning device 2 and the ventilating device 3 are connected to each other via the communication line 4 or wirelessly. Specifically, two way communication between the heat pump type air-conditioning device 2 and the ventilating device 3 or one-way communication from the heat pump type air conditioning device 2 to the ventilating device 3 is performed. [0016] An operation in Embodiment 1 will be described with reference to Fig. 2 below. First, the controller 2a causes the human detection sensor 5 to detect the
C
number of people in the air-conditioning space 10 (step S1 01) and determines whether any person is present in the air-conditioning space 10, on the basis of a detected signal (step S102). [0017] In the case of Yes in step S102 (in the case where any person is present in the air-conditioning space 10), the controller 2a sets the thresholds to a1 (corresponding to a first threshold in the present invention), p1 (corresponding to a second threshold in the present invention), and yl (corresponding to a third threshold in the present invention). In the case of No in step S1 02 (in the case where no person is present in the air-conditioning space 10), the controller 2a sets the thresholds to a2 (corresponding to the first threshold in the present invention), p2 (corresponding to the second threshold in the present invention), and y2 (corresponding to the third threshold in the present invention). [0018] Here, the thresholds a1 and a2 are values related to a difference obtained by subtracting an outdoor temperature Tout from a target setting temperature Tset. In addition, the thresholds p1 and p2 are values related to a difference obtained by subtracting the outdoor temperature Tout from an indoor temperature Tin. Moreover, the thresholds yl and y2 are values related to a difference obtained by subtracting an indoor heat load Lin from a cooling capacity Qout by introduction of outdoor air. As described above, setting of the thresholds a1, a2, p1, p2, yl, and y2 is determined by a value detected by the human detection sensor 5 (by whether any person is present in the air-conditioning space 10). Here, the thresholds a1, 31, and yl in the case where any person is present are set so as to be higher than the thresholds a2, p2, and y2 in the case where no person is present. This is because it is necessary to perform determination in consideration of the body temperature of a person. [0019] In the case of Yes in step S102, the controller 2a calculates to determine whether Tset-Tout is higher than al (step S111). [0020] In the case of Yes in step S111 (Tset-Tout > a1), the controller 2a calculates to determine whether Qout-Lin is higher than yl (step S112). In the case of No in step S111 (Tset-Tout: al), the controller 2a calculates to determine whether Tin-Tout is higher than p1 (step S113). [0021] In the case of Yes in step S112 (Qout-Lin > y1), the controller 2a stops the heat pump type air-conditioning device 2 and outputs an operation signal to the ventilating device 3, and the ventilating device 3 performs a ventilation operation upon reception of the operation signal (step S114). In the case of No in step S112 (Qout-Lin y1), the controller 2a operates the heat pump type air-conditioning device 2 and also outputs an operation signal to the ventilating device 3, and the ventilating device 3 performs a ventilation operation upon reception of the operation signal (step S115). [0022] In the case of Yes in step S113 (Tin-Tout > p1), the controller 2a operates the heat pump type air-conditioning device 2 and also outputs an operation signal to the ventilating device 3, and the ventilating device 3 performs a ventilation operation upon reception of the operation signal (step S115). In the case of No in step S113 (Tin-Tout p1), the controller 2a operates the heat pump type air-conditioning device 2 and outputs a stop signal to the ventilating device 3 (step S116). [0023] In the case of No in step S102, the controller 2a sets the thresholds to a2, p2, and y2. It should be noted that a subsequent operation (steps S121 to S126) is the same operation as an operation (steps S111 to S116) after the thresholds are set to a1, 01, and y1, and thus the description thereof is omitted here. [0024] As described above, the air-conditioning system 100 according to Embodiment 1 is configured to change the thresholds for determining whether cooling by introduction of outdoor air is enabled, on the basis of person presence information by -7 the human detection sensor 5, and thus has an effect of contributing to energy saving without deteriorating comfort. [0025] In addition, the air-conditioning system 100 according to Embodiment 1 is configured to determine whether the cooling capacity by introducing the outdoor air is sufficient for the indoor heat load, on the basis of whether it exceeds the threshold or is equal to or less than the threshold, and thus the air-conditioning system 100 has an effect of enabling outdoor air cooling which takes into consideration loss in introducing the outdoor air. [0026] Moreover, the air-conditioning system 100 according to Embodiment 1 changes the thresholds on the basis of presence/absence of a person in the air-conditioning space 10. Thus, in the case where any person is present in the air-conditioning space 10, energy-saving operation which takes comfort into consideration is enabled. On the other hand, in the case where no person is present in the air-conditioning space 10, operation that prioritizes energy conservation over comfort is enabled. [0027] It should be noted that in Embodiment 1, the controller 2a is provided in the heat pump type air-conditioning device 2, but the configuration is not limited to this. For example, the controller 2a may be provided independently of the heat pump type air-conditioning device 2. In this case, the controller 2a may detect a detection value of the human detection sensor 5, and the heat pump type air-conditioning device 2 and the ventilating device 3 may communicate with each other via the communication line 4 or wirelessly. [0028] In addition, in Embodiment 1, when any person is present in the air conditioning space 10, the thresholds are set to a1, 31, and yl regardless of the number of people, but the setting is not limited to this. For example, the thresholds may be increased in a stepwise fashion as the number of people present in the air conditioning space 10 increases. 0 [0029] Moreover, in Embodiment 1, the outdoor air introduction portion 1 and the ventilating device 3 are provided independently of each other, but the configuration is not limited to this. For example, the outdoor air introduction portion 1 and the ventilating device 3 may be integrated with each other. In other words, only a single opening may be provided which serves as an opening through which the outdoor air is introduced and as an opening through which the air in the air-conditioning space 10 is discharged to the outside. [0030] Embodiment 2 Embodiment 2 will be described with reference to Figs. 3 and 4 below. Fig. 3 is a diagram showing the configuration of an air-conditioning system 100 according to Embodiment 2 of the present invention. Fig. 4 is a diagram showing a flowchart of a control operation of the air conditioning system 100 according to Embodiment 2 of the present invention. It should be noted that the same portions as those of Embodiment 1 are designated by the same reference signs and the description thereof is omitted. [0031] In Embodiment 1, the outdoor air introduction portion 1 through which the outdoor air flows into the air-conditioning space 10 is provided, and the ventilating device 3 which causes the air in the air-conditioning space 10 to flow out to the outside is provided, whereby the air in the air-conditioning space 10 and the outdoor air are circulated. In contrast, in Embodiment 2, the outdoor air introduction portion 1 and the ventilating device 3 are eliminated, a total heat exchanger 6 and openings 7c, 7d, 20a, and 20b (described later) are provided, and the heat pump type air conditioning device 2 and the total heat exchanger 6 are caused to cooperate. Specifically, the heat pump type air-conditioning device 2 and the total heat exchanger 6 are connected to each other via the communication line 4 or wirelessly. More specifically, two-way communication between the heat pump type air-conditioning device 2 and the total heat exchanger 6 or one-way communication from the heat pump type air-conditioning device 2 to the total heat exchanger 6 is performed. [0032] The total heat exchanger 6 is capable of direct ventilation in which the outdoor air is directly guided into the room without heat exchange in the total heat exchanger, and is provided in the air-conditioning device installation space 20. In the partition plate 7, the opening 7c through which the air in the air-conditioning space 10 flows into the air-conditioning device installation space 20 and further into the total heat exchanger 6 and the opening 7c through which air discharged from the total heat exchanger 6 flows into the air-conditioning space 10, are provided. In the air conditioning device installation space 20, the opening 20a through which the outdoor air flows into the air-conditioning device installation space 20 and the opening 20b through which the air discharged from the total heat exchanger 6 flows out to the outside, are provided. [0033] The total heat exchanger 6 exchanges heat between the air that flows through the opening 20a into the air-conditioning device installation space 20 and further into the total heat exchanger 6 and the air that flows through the opening 7c into the air conditioning device installation space 20 and further into the total heat exchanger 6. The air that flows through the opening 20a into the air-conditioning device installation space 20 and further into the total heat exchanger 6 is discharged through the opening 7d to the air-conditioning space 10. The air that flows through the opening 7c into the air-conditioning device installation space 20 and further into the total heat exchanger 6 is discharged through the opening 20b to the outside. It should be noted that the total heat exchanger 6 and the opening 7c, the total heat exchanger 6 and the opening 7d, the total heat exchanger 6 and the opening 20a, and the total heat exchanger 6 and the opening 20b are connected to each other via ducts which are air passages. [0034] An operation in Embodiment 2 will be described with reference to Fig. 4 below. First, control of the heat pump type air-conditioning device 2 and the 11 r% ventilating device 3 in the case where thresholds are set to a1, f1, and yl will be described with reference to Fig. 4 (steps S211 to S216). [0035] First, the controller 2a causes the human detection sensor 5 to detect the number of people in the air-conditioning space 10 (step S201) and determines whether any person is present in the air-conditioning space 10, on the basis of a detected signal (step S202). [0036] In the case of Yes in step S202, the controller 2a calculates to determine whether Tset-Tout is higher than al (step S211). [0037] In the case of Yes in step S211 (Tset-Tout > a1), the controller 2a calculates to determine whether Qout-Lin is higher than yl (step S212). In the case of No in step S211 (Tset-Tout a1), the controller 2a calculates to determine whether Tin-Tout is higher than p1 (step S213). [0038] In the case of Yes in step S212 (Qout-Lin > yl), the controller 2a stops the heat pump type air-conditioning device 2 and outputs a direct ventilation operation signal to the total heat exchanger 6, and the total heat exchanger 6 performs a direct ventilation operation upon reception of the direct ventilation operation signal (step S214). In the case of No in step S212 (Qout-Lin yl), the controller 2a operates the heat pump type air-conditioning device 2 and also outputs a direct ventilation operation signal to the total heat exchanger 6, and the total heat exchanger 6 performs a direct ventilation operation upon reception of the direct ventilation operation signal (step S215). [0039] In the case of Yes in step S213 (Tin-Tout > p1), since there is a cooling effect by introducing the outdoor air into the room, the controller 2a operates the heat pump type air-conditioning device 2 and outputs a direct ventilation operation signal to the -11 total heat exchanger 6 (step S215). In the case of No in step S213 (Tin-Tout p31), the controller 2a operates the heat pump type air-conditioning device 2 and outputs a heat exchange ventilation operation signal to the total heat exchanger 6 (step S216). [0040] In the case of No in step S202, the controller 2a sets the thresholds to a2, p2, and y2. Then, the controller 2a calculates to determine whether Tset-Tout is higher than a2 (step S221). [0041] In the case of Yes in step S221 (Tset-Tout > a2), the controller 2a calculates to determine whether Qout-Lin is higher than y2 (step S222). In the case of No in step S221 (Tset-Tout a2), the controller 2a calculates to determine whether Tin-Tout is higher than p2 (step S223). [0042] In the case of Yes in step S222 (Qout-Lin > y2), the controller 2a stops the heat pump type air-conditioning device 2 and outputs a direct ventilation operation signal to the total heat exchanger 6, and the total heat exchanger 6 performs a direct ventilation operation upon reception of the direct ventilation operation signal (step S224). In the case of No in step S222 (Qout-Lin y2), the controller 2a operates the heat pump type air-conditioning device 2 and also outputs a direct ventilation operation signal to the total heat exchanger 6, and the total heat exchanger 6 performs a direct ventilation operation upon reception of the direct ventilation operation signal (step S225). [0043] In the case of Yes in step S223 (Tin-Tout > p2), since there is a cooling effect by introducing the outdoor air into the room, the controller 2a operates the heat pump type air-conditioning device 2 and outputs a direct ventilation operation signal to the total heat exchanger 6 (step S225). In the case of No in step S223 (Tin-Tout p32), the controller 2a operates the heat pump type air-conditioning device 2 and outputs a stop signal to the total heat exchanger 6 (step S226). This is because when there is no person, it is considered that the amount of generated C02 is low and ventilation is not necessary. [0044] As described above, the air-conditioning system 100 according to Embodiment 2 determines whether there is a cooling effect by introducing the outdoor air into the room, by comparing the target setting temperature, the outdoor temperature, and the indoor temperature. When there is a cooling effect, the air-conditioning system 100 causes the total heat exchanger 6 to perform a direct ventilation operation to introduce the outdoor air, and thus is able to contribute to energy saving. [0045] In addition, the air-conditioning system 100 according to Embodiment 2 determines whether the cooling capacity by introduction of outdoor air is sufficient for the indoor heat load, on the basis of the thresholds. Thus, it is possible to evaluate the cooling capacity by the outdoor air that takes into consideration loss when introducing the outdoor air, and energy-saving operation is enabled without deteriorating comfort. [0046] In addition, the air-conditioning system 100 according to Embodiment 2 changes the thresholds on the basis of presence/absence of a person in the air conditioning space 10. Thus, when any person is present in the air-conditioning space 10, energy-saving operation that takes comfort into consideration is enabled. On the other hand, when no person is present in the air-conditioning space 10, operation that prioritizes energy saving over comfort is enabled. [0047] In addition, in the air-conditioning system 100 according to Embodiment 2, when no person is present in the air-conditioning space 10, a stop signal is outputted from the heat pump type air-conditioning device 2 to the total heat exchanger 6. Thus, it is possible to provide the air-conditioning system 100 which is capable of energy-saving operation.
[0048] In addition, the air-conditioning system 100 according to Embodiment 2 is configured to use the total heat exchanger 6 as ventilation means. In other words, since ventilation means capable of heat exchange ventilation is used, comfort in the air-conditioning space 10 is not deteriorated when performing ventilation. [0049] It should be noted that it is possible to install the indoor temperature sensor 8 and the outdoor temperature sensor 9 at various locations as long as it is possible to detect the indoor and outdoor temperatures. For example, the indoor temperature sensor 8 may be installed at a ceiling surface defining the air-conditioning space 10, and the outdoor temperature sensor 9 may be installed in the air-conditioning space 10 or outside the air-conditioning space 10. Reference Signs List [0050] 1 outdoor air introduction portion 1 a opening 1 b outdoor air separation plate 2 heat pump type air-conditioning device 2a controller 3 ventilating device 3a opening 3b fan 4 communication line 5 human detection sensor 6 total heat exchanger 7 partition plate 7a, 7b, 7c, 7d opening 8 indoor temperature sensor 9 outdoor temperature sensor 10 air-conditioning space 20 air-conditioning device installation space 20a, 20b opening 100 air-conditioning system 4 A
权利要求:
Claims (1)
[1] 4-7 target setting temperature is higher than the first threshold, the controller compares the value obtained by subtracting the indoor heat load from the cooling capacity, with the third threshold; when the value obtained by subtracting the indoor heat load from the cooling capacity is equal to or lower than the third threshold, the controller operates the heat pump type air-conditioning device and causes the direct ventilation operation to be performed; and when the value obtained by subtracting the indoor heat load from the cooling capacity is higher than the third threshold, the controller stops operation of the heat pump type air-conditioning device and causes the direct ventilation operation to be performed. [Claim 6] The air-conditioning system of claim 1 or 2, wherein the ventilating device includes a total heat exchanger capable of performing a direct ventilation operation in which the outdoor air is guided into the room without performing indoor heat exchange, and when the number of people is not detected by the human detection sensor: when the value obtained by subtracting the outdoor temperature from the target setting temperature is equal to or lower than the first threshold, the controller compares the value obtained by subtracting the outdoor temperature from the indoor temperature, with the second threshold; when the value obtained by subtracting the outdoor temperature from the indoor temperature is equal to or lower than the second threshold, the controller operates the heat pump type air-conditioning device and stops operation of the total heat exchanger; and when the value obtained by subtracting the outdoor temperature from the indoor temperature is higher than the second threshold, the controller operates the heat pump type air-conditioning device and causes the direct ventilation operation to be performed, and when the value obtained by subtracting the outdoor temperature from the target setting temperature is higher than the first threshold, the controller compares the value obtained by subtracting the indoor heat load from the cooling capacity, with the third threshold; when the value obtained by subtracting the indoor heat load from the cooling capacity is equal to or lower than the third threshold, the controller 410 operates the heat pump type air-conditioning device and causes the direct ventilation operation to be performed; and when the value obtained by subtracting the indoor heat load from the cooling capacity is higher than the third threshold, the controller stops operation of the heat pump type air-conditioning device and causes the direct ventilation operation to be performed. -1cn
类似技术:
公开号 | 公开日 | 专利标题
AU2013223492B2|2015-07-02|Air conditioning system
US8973845B2|2015-03-10|Air conditioning apparatus with a controller that utilizes two set temperature ranges
US7647785B2|2010-01-19|Air conditioning system
KR20080042397A|2008-05-15|Apparatus for operating of air conditioner system and control method thereof
JP5741723B1|2015-07-01|Ventilation equipment
JPWO2010116824A1|2012-10-18|Heat exchange ventilator
EP3406982B1|2020-07-08|Air-conditioning device
US20190203971A1|2019-07-04|Heat exchange-type ventilation device
WO2000022355A1|2000-04-20|Air conditioner
EP3748243A1|2020-12-09|Air conditioning system and ventilation device
AU2015334400A1|2017-06-08|Air conditioning apparatus
KR101865947B1|2018-06-08|Method and system for integrated hvac of a battery powered vehicle
KR101708838B1|2017-03-08|A Airconditioner for Communication Device Rack in Computer Room and A Cooling System
KR101474211B1|2014-12-17|Apparatus for air conditioning per room in high-rise buildings
CN110285497B|2021-07-16|Air conditioner outdoor unit and air conditioner control method
WO2021064844A1|2021-04-08|Ventilation device, ventilation system, and ventilation control method
JP4683025B2|2011-05-11|Air conditioning system
JP6656043B2|2020-03-04|Ventilation systems and equipment
KR20150027516A|2015-03-12|Air conditioning system for automotive vehicles
JP5164871B2|2013-03-21|Air conditioner for vehicles
JPH05306830A|1993-11-19|Air conditioner
同族专利:
公开号 | 公开日
JP5665781B2|2015-02-04|
US20150013958A1|2015-01-15|
US9664402B2|2017-05-30|
CN103292428B|2015-08-19|
JP2013174364A|2013-09-05|
EP2818804A4|2016-01-27|
CN203274131U|2013-11-06|
AU2013223492B2|2015-07-02|
EP2818804A1|2014-12-31|
CN103292428A|2013-09-11|
WO2013125263A1|2013-08-29|
EP2818804B1|2017-11-08|
ES2651072T3|2018-01-24|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
JPH02148556A|1988-11-09|1990-06-07|Toshiba Lighting & Technol Corp|Discharge lamp|
JPH02178556A|1988-12-29|1990-07-11|Matsushita Electric Ind Co Ltd|Operation control device for air conditioner|
JP2838941B2|1991-11-01|1998-12-16|三菱電機株式会社|Duct air conditioner|
CN1056225C|1992-03-07|2000-09-06|三星电子株式会社|An air conditioning apparatus|
JPH0861752A|1994-08-18|1996-03-08|Matsushita Electric Ind Co Ltd|Controller for ventilator|
JPH0869523A|1995-05-16|1996-03-12|Matsushita Electric Ind Co Ltd|Human body recognizing device|
JP4675075B2|2004-09-03|2011-04-20|三洋電機株式会社|Air conditioner and control method of air conditioner|
US8033479B2|2004-10-06|2011-10-11|Lawrence Kates|Electronically-controlled register vent for zone heating and cooling|
JP2006329584A|2005-05-30|2006-12-07|Nitta Ind Corp|Total enthalpy hot-air exchanger and its operation control method|
JP4651460B2|2005-06-17|2011-03-16|株式会社クボタ|Air conditioner and outside air cooling operation method|
JP2010181078A|2009-02-05|2010-08-19|Mitsubishi Electric Building Techno Service Co Ltd|Air conditioning control device|
JP5759092B2|2009-02-24|2015-08-05|パナソニック株式会社|Air conditioning system|
ES2688480T3|2009-03-19|2018-11-02|Daikin Industries, Ltd.|Air conditioning device|
CN101893302B|2009-05-18|2012-10-17|中华电信股份有限公司|Air conditioner management system combined with personnel detection and management mechanism|
US9013059B2|2009-07-30|2015-04-21|Lutron Electronics Co., Inc.|Load control system having an energy savings mode|
CN102141287A|2010-01-29|2011-08-03|三洋电机株式会社|Air-conditioning control apparatus|
JP2011220639A|2010-04-13|2011-11-04|Toshiba Carrier Corp|Heat exchange ventilator|
JP5300793B2|2010-06-11|2013-09-25|三菱電機株式会社|Air conditioner|
US8195313B1|2010-11-19|2012-06-05|Nest Labs, Inc.|Thermostat user interface|
US20120072032A1|2010-09-22|2012-03-22|Powell Kevin J|Methods and systems for environmental system control|
CA2868844C|2012-03-29|2021-07-06|Nest Labs, Inc.|Processing and reporting usage information for an hvac system controlled by a network-connected thermostat|
CA2853033C|2011-10-21|2019-07-16|Nest Labs, Inc.|User-friendly, network connected learning thermostat and related systems and methods|
US9304500B2|2012-01-06|2016-04-05|Cortland Research Llc|System for building management of electricity via network control of point-of-use devices|
US9595070B2|2013-03-15|2017-03-14|Google Inc.|Systems, apparatus and methods for managing demand-response programs and events|
US9810442B2|2013-03-15|2017-11-07|Google Inc.|Controlling an HVAC system in association with a demand-response event with an intelligent network-connected thermostat|
US9298197B2|2013-04-19|2016-03-29|Google Inc.|Automated adjustment of an HVAC schedule for resource conservation|
US9857238B2|2014-04-18|2018-01-02|Google Inc.|Thermodynamic model generation and implementation using observed HVAC and/or enclosure characteristics|
US9933177B2|2014-11-04|2018-04-03|Google Llc|Enhanced automated environmental control system scheduling using a preference function|
US9772116B2|2014-11-04|2017-09-26|Google Inc.|Enhanced automated control scheduling|
US9869484B2|2015-01-14|2018-01-16|Google Inc.|Predictively controlling an environmental control system|
US20160201933A1|2015-01-14|2016-07-14|Google Inc.|Predictively controlling an environmental control system|
US10222083B2|2015-10-08|2019-03-05|Johnson Controls Technology Company|Building control systems with optimization of equipment life cycle economic value while participating in IBDR and PBDR programs|WO2015033459A1|2013-09-09|2015-03-12|三菱電機株式会社|Air-conditioning control system|
CN104729008A|2013-12-24|2015-06-24|海尔集团公司|Intelligent air-conditioner control method, intelligent air-conditioner control device and indoor unit|
JP6120786B2|2014-02-13|2017-04-26|三菱電機株式会社|Air conditioner and control program|
CN106461255B|2014-07-16|2019-05-10|三菱电机株式会社|Air conditioning control device and air conditioning control method|
US9644856B1|2014-07-28|2017-05-09|System Performance Technologies, LLC|System and method for monitoring and controlling an HVAC system|
CN105180371B|2015-09-30|2018-11-13|青岛海尔空调器有限总公司|A kind of method and air conditioner of detection room temperature|
JP6075512B1|2015-12-03|2017-02-08|三菱電機株式会社|Air conditioning system and air conditioning control server|
CN107101318B|2016-02-22|2019-05-24|珠海格力电器股份有限公司|Air conditioner send warm control method and device|
CN105701952B|2016-04-19|2019-02-12|北京小米移动软件有限公司|The method and device of air abnormality alarming|
US10121363B2|2016-12-27|2018-11-06|Lite-On ElectronicsLimited|Alarm triggering method for sensor and electronic device using the same|
JP6460150B2|2017-05-15|2019-01-30|三菱電機ビルテクノサービス株式会社|Ventilation system|
CN107152765A|2017-05-31|2017-09-12|信利光电股份有限公司|A kind of air conditioning control method and system based on camera module|
CN107449106B|2017-07-11|2019-12-10|深圳达实智能股份有限公司|air conditioner fan self-adaptive adjusting method, central air conditioner and storage medium|
CN107576001B|2017-08-18|2020-01-31|广东美的暖通设备有限公司|Estimated energy consumption calculation method and system and air conditioner|
CN109323398B|2018-09-30|2020-10-30|广东美的制冷设备有限公司|Air conditioner control method and device and air conditioner|
CN110440397A|2019-07-12|2019-11-12|雄安达实智慧科技有限公司|Subway station public domain pollutant catabolic gene method, system and electronic equipment|
US20210156582A1|2019-11-22|2021-05-27|Qc Manufacturing, Inc.|Fresh air cooling and ventilating system|
法律状态:
2015-10-29| FGA| Letters patent sealed or granted (standard patent)|
优先权:
申请号 | 申请日 | 专利标题
JP2012037405A|JP5665781B2|2012-02-23|2012-02-23|Air conditioning system|
JP2012-037405||2012-02-23||
PCT/JP2013/050709|WO2013125263A1|2012-02-23|2013-01-17|Air conditioning system|
[返回顶部]